I. ISOSPIN: INTRODUCTION AND CONCEPTS

Protons and neutrons have almost identical mass $(\Delta m/m \cong 1.4 \times 10^{-3})$ but otherwise show an almost identical behavior in their nuclear interaction. By using a double-valued variable called **Isospin** that distinguish between the 'proton' state (describe by a projection quantum number $t_z = \frac{1}{2}$)and 'neutron' state (describe by a projection quantum number $t_z = -\frac{1}{2}$).

$$|p>=|tt_z>=|\frac{1}{2}\frac{+1}{2}> |n>=|tt_z>=|\frac{1}{2}\frac{-1}{2}>$$

Experimental evidence for the equivalent of protons and neutron in their nuclear interaction.

1) Low energy np scattering and pp scattering below E < 5 MeV, after correcting for Coulomb effects, is equal within a few percent in the S scattering channel.

2) Energy spectra in 'mirror' nuclei are almost identical. The small difference are both a consequence of the difference in the Coulomb interaction energy and of specific nuclear wave functions, that mean the substation $n - n \Leftrightarrow p - p; n - p \Leftrightarrow p - n$ does not modify the interaction energy. This observation implies the concept of *charge symmetry* in nuclear force, see the figure.

3) Further information on how the n - n, p - n force relate to the n - p force cannot be deduced from mirror nuclei. Consider the triplet of nuclei e.g. ${}^{30}_{14}Si_{16}, {}^{30}_{15}P_{15}, {}^{30}_{16}S_{14}$, it is immediately clear within a number of states $(0^+, 2^+)$ (after correcting for coulomb energies). Taken as a core ${}^{28}_{14}Si_{14}$, the data show that the residual interaction energies due to n - n, n - p, p - p, respectively. A number of states in 30 P do not find a partner in the 30 S, 30 Si nuclei. This follows from the pauli principle that excludes the realization of a number of configuration in identical nucleon system (n - n, p - p) compared to the n - p)(non-identical nucleons) system. The pauli principle explains the large number of extra states in 30 P, as shown in figure.

FIG. 1: The level pacing between the T=1 isospin states in the $A = 30^{-30}$ Si 30 Si 30 P 30 S are very similar. The states in 30 P where isospin not given are T = 0 states.

3/2	2.42		3.42	$(9/2)^{+}$
9/2⁺	2.40		3.06	2/2
3/2 ⁺ 7/2 ⁺	2.80		2.72	7/2
1/2 [⁺]	2.74	•••••	2.67 2.49	3/2⁺ 1/2⁺
5/2*	1.96	•••••	1.79	E/0 ⁺
7/2⁺	1.61		1.61	5/2 (7/2 ⁺)
3/2*	0.97		0.94	3/2*
1/2⁺	0.59	••••••••••	0.45	1/2*
5/2 ⁺	0.00		0.00	5/2*
	$^{25}_{12}\text{Mg}_{13}$		²⁵ Al 12	

FIG. 2: Comparison of level schemes of $A = 30^{25}$ Mg ,²⁵Al mirror nuclei shows the close similarity excitation energies.